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Abstract 

Credit card fraud is a growing problem due to the rise of card transactions. This study investigates the effectiveness 

of Logistic Regression (LogReg) and Extreme Gradient Boosting (XGBoost) in identifying fraudulent transactions 

in a highly imbalanced dataset, where only 8% of the data represents fraudulent activity. To address the class 

imbalance, random undersampling was applied, reducing the number of legitimate transactions. This technique 

significantly improved LogReg's ability to detect fraud, with the AUC-ROC increasing from 0.7994 to 0.9089. 

XGBoost performed well even without hyperparameter tuning or random undersampling, indicating its robustness as 

a baseline model. The study highlights the critical importance of addressing class imbalance in fraud detection. Both 

LogReg and XGBoost demonstrated potential, particularly when combined with techniques like undersampling or 

hyperparameter tuning. These findings underscore the need for effective data preprocessing methods to enhance the 

performance of machine learning models in detecting credit card fraud. 
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1. INTRODUCTION 

Over the past few decades, the fintech industry has experienced rapid growth, making credit cards 

a common choice for everyday purchases. However, this rapid rise in credit card usage has also led to 

an increase in credit card fraud, creating significant financial risks to both consumers and financial 

institutions. Effective fraud detection has become essential to mitigate these risks and maintain the 

integrity of financial systems. 

To address this vulnerability, it is crucial to implement effective methods that can accurately 

identify fraudulent transactions. Data mining and machine learning approaches have proven to be 

particularly effective in this context[1]. Logistic Regression is a proven method known for its 

effectiveness when dealing with straightforward datasets that have linear relationships[2]. However, it 

faces challenges when handling complex data with many dimensions, known as the "curse of 

dimensionality." As the number of features grows, Logistic Regression struggles to maintain accuracy, 

requiring more data points[3], [4].  

In contrast, Extreme Gradient Boosting (XGBoost) is a powerful machine learning algorithm that 

enhances logistic regression's binary classification concept through gradient boosting[2]. It leverages 

gradient tree boosting to create a more flexible ensemble model, making it highly effective in handling 

complex relationships and non-linear patterns within high-dimensional data[3], [5]. Both algorithms 
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share the foundation of predicting binary outcomes using a logistic function, but XGBoost offers a more 

robust approach for intricate datasets.[2].   

To maximize the performance of XGBoost, hyperparameter tuning is applied. This method 

optimizes the algorithm's performance by adjusting its parameters. In this study, Randomized Search 

CV is employed for hyperparameter tuning due to its simplicity and minimal computational resource 

requirements[6]. It often helps to improve model performance in many cases. 

Real-world applications often involve imbalanced data, where classes are not equally represented. 

This imbalance can significantly impact model performance, biased to the majority class [7], [8]. With 

this matter, It is crucial to find the best way to address the imbalance data problem[7]. However, the 

optimal approach depends on the characteristics of the dataset and the specific classification task[7]. For 

that reason, Random undersampling could be a great approach regarding this matter[9], [10]. 

Random undersampling is a simple sampling technique that can be used to addresses data 

imbalance by randomly selecting samples, in this study, from the majority class[11]. It is suitable for 

this study as it effectively reduces the size of the majority class. Given the large size of the dataset, 

substantial computational resources are required. However, the simplicity of random undersampling 

makes it an efficient choice for this purpose.  

In summary, this paper aims to achieve two objectives: (I) to compare the performance of Logistic 

Regression and XGBoost algorithms using Random Undersampling in classifying fraudulent 

transactions, and (II) to optimize the XGBoost accuracy Hyperparameter Tuning using Randomized 

Search CV. 

2. METHOD 

This chapter explain the methodology employed in this research to compare the performance of 

Logistic Regression and XGBoost for credit card fraud detection with Random Undersampling 

technique. The chapter will be divided into the following sections in Figure 1: 

 

 
Figure 1. Research method stage 

2.1. Data Description 

The dataset is obtained from Kaggle[12] which is available publicly. It has 1,000,000 samples 

with 87,403 true values in the target class and  912,597 false values in the target class. It is implied that 

this dataset has an extremely imbalanced class with only 8.74% of the minority class. Besides,  It also 

has 7 features with 3 numeric data and 4 subtype data, with a target class column at the end. The dataset 

is described in Table 1 and Table 2. 

 

Table 1. Dataset Description 

No Column Description 

1 distance_from_home Distance between the attempted transaction location and the cardholder's 

registered address (in Kms). 

2 distance_from_last_tr

ansaction 

Distance between the attempted transaction location and the location of the 

most recent transaction using the same card (in Kms). 

3 ratio_to_median_purc

hase_price 

Ratio of the current transaction amount to the median transaction amount for 

this card (e.g., transaction amount of 85 with a median of 50 would be 0.59). 
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4  repeat_retailer Indicates whether the attempted transaction occurs at a retailer where the card 

is frequently used (Yes/No). 

5 used_chip Indicates whether the transaction attempt involved using an RFID chip in the 

card (Yes/No). 

6 used_pin_number Indicates whether the transaction attempt involved entering a PIN number 

(Yes/No). 

7 online_order Indicates whether the transaction attempt is for an online order (Yes/No). 

8 fraud Indicates whether the transaction is classified as fraudulent or legitimate 

(Yes/No). 

 

Table 2. Summary of Statistics 

No Column Type Max Min Mean Std 

1 distance_from_home Numerical 10632.723670 0.004874 26.628792 65.90784 

2 distance_from_last_t

ransaction 
Numerical 11851.104560 0.000118 5.036519 25.843093 

3 ratio_to_median_pur

chase_price 
Numerical 267.802942 0.004399 1.824182 2.799589 

4  repeat_retailer Categorical 

(Binary) 
1.000000 0.000000 0.881536 0.323157 

5 used_chip Categorical 

(Binary) 
1.000000 0.000000 0.350399 0.477095 

6 used_pin_number Categorical 

(Binary) 
1.000000 0.000000 0.100608 0.300809 

7 online_order Categorical 

(Binary) 
1.000000 0.000000 0.650552 0.476796 

8 fraud Categorical 

(Binary) 
1.000000 0.000000 0.087403 0.282425 

2.2. Preparation 

This study leverages a credit card fraud dataset with minimal cleaning requirements. In this stage,  

Exploratory data analysis (EDA) is conducted as the initial step to gain valuable insights into the data 

distribution and identify potential areas for preprocessing. Understanding these characteristics helps 

guide subsequent data preparation techniques. Following EDA, the data undergoes the following 

preprocessing steps: 

2.2.1. Splitting 

The data is then split into training and testing sets. Splitting to 80% for training and 20% for 

testing is one of the common approach. The training set is used to build the model, while the unseen 

testing set provides an unbiased evaluation of the model's generalizability. Splitting the data first before 

doing any preprocessing process is generally recommended to prevent data leakage to the testing set and 

unintentionally influence the model during training, leading to overfitting. 

2.2.2. Feature Scaling 

Feature scaling is applied to standardize the data. Standardization ensures all features have a mean 

of zero and a standard deviation of one, removing the influence of units and promoting equal 

contribution from each feature during model training[13] For Standardization purpose, StandardScaller 

from Python’s Scikit-Learn library is used.  
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2.2.3. Random Undersampling (RUS) 

To address class imbalance within the dataset, Random Undersampling (RUS) is employed. This 

technique strategically removes majority class samples to a desired number[11]. Samples are chosen 

randomly, aiming to achieve a more balanced class distribution. In this study, RUS is used to choose 

200,000 of majority class in 800,000 training set. RUS requires fewer computational resources, but it 

does come with a potential drawback such as the possibly loss of valuable data insights. The decision to 

use it depends on the severity of the class imbalance and the chosen modeling approach[14], [15].  

2.3. Implementation 

This section focuses on the modelling stage, with the implementation of two machine learning 

algorithms, Logistic Regression and XGBoost. Hyperparameter Tuning with Randomized Search CV 

will also be implemented with XGBoost. It will be a great step for the model to optimize their 

performance in identifying fraudulent transactions[6]. 

2.3.1. Logistic Regression 

A logistic regression can be interpreted as a generalized linear model (GLM) when the dependent 

variable is binary, either 0 or 1 [16], [17]. It has recently been used to analyze the advantages of using 

measurable independent factors and to see how a group of these factors affects the regression outcomes 

[5]. Unlike linear regression, which predicts continuous values, logistic regression transforms its linear 

output using the logistic function (sigmoid function) to produce a probability value between 0 and 1[18]. 

This probability indicates the likelihood of an observation belonging to the positive class (e.g., 

fraudulent transaction).  

To estimate the probability of to the positive class, linear score is calculated first (z) using 

equation 1. This score is a weighted sum of the independent variables, where each variable's contribution 

is determined by its associated weight[19]. Equation 2 then employs the logistic function (σ) to 

transform this linear score (z) into a probability estimate (𝒚̂) between 0 and 1.  

𝒛 =  𝒘𝑻  ∗ 𝒙 + 𝒃       (1) 

𝒚̂ =  𝝈(𝒛) =  
𝟏

(𝟏+𝒆(−𝒛))
      (2) 

Information: 

z : Linear Predictor 

𝒘𝑻 : Transpose of the Weights (w) 

x : Independent Variable 

b : Bias Term 

𝒚̂  : Predicted Probability 

𝝈(𝒛) : Logistic Function 

e : Exponential Function (2.71828) 

This function helps determine the likelihood of fraud. Logistic regression has several advantages, 

including computational efficiency, making it suitable for large datasets and resource-constrained 

situations. It can handle various types of variables and does not require normal distribution.[20]. 

Furthermore, it does well in capturing linear relationships between features and the target variable, 

leading to accurate classifications. However, logistic regression is not without limitations. It is restricted 

to binary classification problems only, as it struggles with scenarios involving more than two classes. 

Additionally, logistic regression struggles with capturing non-linear relationships and may be sensitive 

to outliers, potentially leading to suboptimal results [20].  
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2.3.2. XGBoost 

Unlike logistic regression, which relies on a single model, XGBoost leverages the power of 

ensemble learning, specifically a technique known as gradient boosting. Ensemble learning builds robust 

models by combining predictions from multiple weak learners, often referred to as base learners which 

is decision trees[21]. Gradient boosting takes this concept further by creating new models. Each new 

model focuses on correcting the errors made by the previous one, leading to a more accurate ensemble 

[22] 

XGBoost offers several advantages that make it a really good option for different machine 

learning jobs. Its ability to handle complex, non-linear relationships between features and the target 

variable is a significant strength compared to simpler models like logistic regression[3]. Moreover, 

XGBoost's ability to manage sparse data well and can train multiple parts at the same time, which is 

great for dealing with complex datasets in real-world situations such as credit card fraud. 

While XGBoost offers significant advantages, it's not without limitations.  One consideration is 

its computational demands. Training XGBoost models can require more computational resources 

compared to simpler algorithms like logistic regression.  Additionally, XGBoost has a larger set of 

hyperparameters that require careful tuning for optimal performance[6]. This tuning process can be more 

complex compared to LogReg, potentially requiring expertise and experimentation. 

Despite these limitations, XGBoost remains a powerful tool for classification and regression tasks 

due to its ability to learn complex patterns, handle large datasets efficiently, and offer valuable insights 

into feature importance[5]. 

2.3.3. Hyperparameter Tuning 

While machine learning models rely on hyperparameters that influence their performance, the 

optimal values for these parameters need to be decide. Hyperparameter tuning offers a method to identify 

the most optimal values to improve the model performance[23], [24]. 

Several techniques exist for hyperparameter tuning, with grid search and randomized search being 

common approaches. Grid search carefully checks a set of values one by one, making sure to cover 

everything broadly. Thus, this thoroughness need a lot of computing resource. [6]. Randomized search 

offers an alternative by efficiently sampling hyperparameter combinations, reducing the computational 

resources needed and  risk of getting stuck in suboptimal configurations[6]. 

The importance of hyperparameter tuning is suitable for algorithms like XGBoost. XGBoost, with 

its ensemble nature and gradient boosting framework, owns a rich set of hyperparameters impacting 

model complexity, regularization, and learning rate[6]. Tuning these parameters allows for optimization, 

leading to improved accuracy[6]. In this study, Randomized Search CV will be employed for XGBoost 

to efficiently explore the hyperparameter space and achieve optimal model performance. 

2.4. Evaluation 

The implemented models will be evaluated on a held-out test set created by splitting the 

preprocessed data in 80/20 split ratio. Established metrics like accuracy, precision, recall, F1-score, and 

AUC-ROC will be used to compare different configurations performance of Logistic Regression and 

XGBoost, such as with and without hyperparameter tuning Randomized Search CV, as well as with and 

without Random undersampling. This evaluation will identify the most effective model configuration 

for credit card fraud detection. 

AUC-ROC (Area Under the Receiver Operating Characteristic Curve) serves as a performance 

metric that summarizes how well a model distinguishes between positive and negative cases. It achieves 

this by calculating the probability that a randomly chosen positive example ranks higher on the ROC 

curve (higher True Positive Rate) compared to a randomly chosen negative example[21]. 
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In binary classification tasks, accurately identifying both positive and negative cases is crucial. 

True positives (TP) represent correctly classified positive examples, while true negatives (TN) represent 

correctly classified negative examples. In the other hand, false positives (FP) occur when the model 

mistakenly classifies a negative example as positive, and false negatives (FN) occur when the model 

misses a positive example, identifying it as negative. It is included in the confusion matrix table is shown 

in the table 3. 

 

Table 3. Confusion Matrix 

Actual Class 
Predicted Class 

1 0 

1 TP FP 

0 FN TN 

 

Accuracy is the ratio of correctly predicted instances to the total instances and is formulated in 

Equation 3: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%     (3) 

 

Precision measures the proportion of true positive predictions out of all positive predictions made 

and is formulated in Equation 4: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%      (4) 

 

Recall quantifies the proportion of actual positive instances that were correctly identified and is 

formulated in Equation 5: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%      (5) 

 

F1-score is the harmonic mean of precision and recall, balancing the trade-off between these 

metrics to provide an overall assessment of a model's performance in identifying positive cases while 

minimizing false positives. It is formulated in Equation 6: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
      (6) 

Information: 

TP : True Positive 

TN : True Negative 

FP : False Positive 

FN : False Negative 

3. RESULT 

This section is a discussion of the study that has been done. Starting from the preprocessing, 

implementation, and evaluation. 

3.1. Preprocessing result 

In this stage, several data preprocessing techniques is performed. To avoid contaminating the 

testing set, the data is first split into training and testing sets with a ratio of 80:20. This ensures that the 

preprocessing steps are applied only to the training data. The details of the split are shown in Table 4. 
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Table 4. Data splitting 

Training Testing 

80% 20% 

800,000 200,000 

1,000,000 

 

Next, feature scaling is applied. Scaling the data before splitting it into training and testing sets is 

crucial. This prevents the data leakage and statistics used for scaling (e.g., standard deviation and mean) 

from being influenced by the testing data. Standardscaller is used in this stage for standardization 

scaling. Standardization transforms the features to have a mean of 0 and a standard deviation of 1[25].  

3.2. Sampling result 

After scaling, a class imbalance handling technique is surely required for the data, such as a 

sampling method[11]. In this stage, The train dataset will reduce it rows using random undersampling. 

It only reduce the majority class rows to 200,000 while minority rows still remain the same. It will boost 

the percentage of the minority class from 9% to 30%. The result and the before is shown in the figure 2 

and 3. 

 

 
Figure 2. Class percentage before sampling 

 

 
Figure 3. Class percentage after sampling 

  

Based on Figures 3 and 4, it can be observed that the ratio between the minority and majority 

class has significantly improved after applying Random Undersampling (RUS). Figure 3 likely 

represents the class distribution before RUS, where the majority class dominates the pie chart. In 

contrast, Figure 4 presumably shows the distribution after RUS, where the minority class now occupies 

a noticeably larger portion relative to the majority class. This visual representation suggests that RUS 

effectively reduced the majority class size, leading to a more balanced class distribution. 
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3.3. Performance Comparison 

After preprocessing the data, configuring the models is crucial for achieving optimal performance. 

This research investigated several configurations: Logistic Regression with and without Random 

Undersampling (RUS), and XGBoost with and without RUS, additionally exploring XGBoost with 

hyperparameter tuning. Due to the large dataset and limited computational resources, Randomized 

Search CV was employed as a hyperparameter tuning technique.  

Following the exploration of various model configurations, this section delves deeper into the 

performance comparison of these models. The results for each configuration will be analyzed using 

metrics like accuracy, precision, recall, F1-score, and AUC-ROC. By comparing the performance 

metrics across configurations, this study aim to identify the model that achieves the most robust and 

accurate credit card fraud detection  

3.3.1. Logistic Regression 

Logistic Regression performed with 2 model configurations, with or without Random 

Undersampling. The classification report is shown in the table 5 and 6. 

 

Table 5. Logistic Regression Report without RUS 
 

Precision Recall F1-Score Support 

0.0 0.9634 0.9933 0.9781 182519 

1.0 0.8964 0.6055 0.7228 17481 

accuracy  0.9594 200000 

macro avg 0.9299 0.7994 0.8504 200000 

weighted avg 0.9575 0.9594 0.9558 200000 

AUC-ROC 0.7994042037616316 

 

Table 6. Logistic Regression Report with RUS 
 

Precision Recall F1-Score Support 

0.0 0.9852 0.9703 0.9777 182519 

1.0 0.7322 0.8476 0.7857 17481 

accuracy  0.9596 200000 

macro avg 0.8587 0.9090 0.8817 200000 

weighted avg 0.9631 0.9596 0.9609 200000 

AUC-ROC 0.908957956266683 

 

As shown in the figure 5 and 6, It is implied that Logistic Regression exhibits a substantial 

improvement in AUC-ROC (from 0.7994 to 0.9089) after applying Random Undersampling (RUS), 

while maintaining a similar overall accuracy (around 0.96). This suggests that the initial model, despite 

achieving high accuracy, suffers from a class imbalance issue. The dominant class likely biases the 

model's predictions, leading to a lower AUC-ROC, which reflects the model's ability to differentiate 

between the positive and negative classes. RUS effectively addresses this imbalance by reducing the 

majority class size, resulting in a more balanced distribution and a more robust performance measure as 

evidenced by the significant increase in AUC-ROC. 

3.3.2. XGBoost 

XGBoost performed with 3 model configurations, the baseline model, with Hyperparameter 

Tuning using Randomized Search CV, and with Random Undersampling . The result is shown in the 

table 7 to 9. 
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Table 7. XGBoost Baseline Model Report 
 

Precision Recall F1-Score Support 

0.0 0.9991 0.9989 0.9990 182519 

1.0 0.9886 0.9905 0.9896 17481 

accuracy  0.9982 200000 

macro avg 0.9939 0.9947 0.9943 200000 

weighted avg 0.9982 0.9982 0.9982 200000 

AUC-ROC 0.9947068391483049 

 

Table 8. XGBoost Report with Hyperparameter Tuning 
 

Precision Recall F1-Score Support 

0.0 0.9991 0.9992 0.9991 182519 

1.0 0.9915 0.9903 0.9909 17481 

accuracy  0.9984 200000 

macro avg 0.9953 0.9948 0.9950 200000 

weighted avg 0.9984 0.9984 0.9984 200000 

AUC-ROC 0.9947607431823108 

 

Table 9. XGBoost Report with RUS 
 

Precision Recall F1-Score Support 

0.0 0.9996 0.9991 0.9994 182519 

1.0 0.9904 0.9963 0.9934 17481 

accuracy  0.9988 200000 

macro avg 0.9950 0.9977 0.9964 200000 

weighted avg 0.9988 0.9988 0.9988 200000 

AUC-ROC 0.9976806125661357 

 

Based on the table 7 to 9, It can be implied that XGBoost performs well on this classification task, 

achieving high accuracy (around 99.8%) across all configurations. However, hyperparameter tuning and 

Random Undersampling (RUS) appear to have minimal impact on overall accuracy. The key difference 

lies in the model's ability to distinguish between classes, measured by AUC-ROC. While the baseline 

XGBoost achieves a high AUC-ROC (0.9947), both tuning (0.9948) and RUS (0.9977) lead to slight 

improvements. Notably, RUS has the most significant impact, suggesting that the original data have a 

class imbalance issue. RUS helps address this imbalance, resulting in a model that can better 

differentiate between the positive and negative classes, as reflected in the higher AUC-ROC score.   

4. DISCUSSIONS 

This analysis resulting critical insights into model performance, class imbalance effects, tuning 

optimization effect, and the strengths of both algorithms. Both XGBoost and Logistic Regression 

achieved high overall accuracy, with XGBoost at around 99.8% and Logistic Regression at 95.9% across 

all configurations. However, a closer look reveals a significant difference in their ability to differentiate 

between positive and negative classes, as indicated by the Area Under the ROC Curve (AUC-ROC).  

While Logistic Regression achieved high accuracy, its initial AUC-ROC score (0.7994) hinting 

at challenges with class imbalance. This is further supported by the analysis of precision and recall. 

While Logistic Regression demonstrated high precision (0.9634) for the majority class, suggesting it 

could predict the dominant class well, it struggled with recall (0.6055) for the minority class (class 1), 

leading to a notable number of false negatives. This highlights Logistic Regression's limitations in 

handling imbalanced datasets. 
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Applying Random Undersampling (RUS) to Logistic Regression significantly improves its AUC-

ROC score (0.9089). This suggests that RUS effectively addresses class imbalance by reducing the 

majority class size, leading to a more balanced distribution and consequently, a more robust performance 

measure. The improvement in recall for the minority class (0.8476) further supports this notion, 

indicating that RUS helps Logistic Regression identify more true positives in the minority class. 

In contrast, XGBoost consistently displayed a strong ability to distinguish between classes, 

evident from its high AUC-ROC scores (around 0.995) across all setups. This indicates XGBoost's 

inherent capability in handling class imbalance, possibly due to its ensemble learning approach and 

capacity to capture intricate data relationships. Even without hyperparameter tuning or class balancing 

techniques, XGBoost maintained a high AUC-ROC, showcasing its robustness in imbalanced 

classification tasks. The application of Hyperparameter Tuning and Random Undersampling did not 

significantly impact its performance, as the model was already performing well. 

5. CONCLUSION 

This study investigated the effectiveness of Logistic Regression (LogReg) and Extreme Gradient 

Boosting (XGBoost) for credit card fraud detection. These findings highlight how important it is to solve 

class imbalance problem, which is a big challenge in this field because there aren't many fraudulent 

transactions in real-world case. Random Undersampling, a technique that reduces the majority class 

size, was employed to address this imbalance dataset and successfully improve model performance. It 

was observed that LogReg required modifications, such as the use of Random Undersampling, to 

achieve optimal performance, while XGBoost demonstrated decent performance even in its baseline 

state. The evaluation, using metrics like accuracy, precision, recall, F1-score, and AUC-ROC, revealed 

that XGBoost consistently outperformed LogReg in identifying fraudulent transactions, especially when 

hyperparameter tuning with Randomized Search was applied. This suggests that XGBoost's inherent 

ability to handle complex relationships within data makes it a more robust choice for credit card fraud 

detection tasks characterized by class imbalance. 
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