
Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

115

Performance Comparison of Logistic Regression and XGBoost for Credit

Card Fraud Detection using Random Undersampling and Hyperparameter

Tuning

Hasri Akbar Awal Rozaq*1, Deni Sutaji2

1,2Graduate School of Informatics, Department of Computer Science, Gazi University, Türkiye

Email: 1hakbar.rozaq@gazi.edu.tr

Submitted: 05 November 2025; Revised: 14 December 2025; Accepted: 26 December 2025;

Published: 31 December 2025

Abstract

Credit card fraud is a growing problem due to the rise of card transactions. This study investigates the effectiveness

of Logistic Regression (LogReg) and Extreme Gradient Boosting (XGBoost) in identifying fraudulent transactions

in a highly imbalanced dataset, where only 8% of the data represents fraudulent activity. To address the class

imbalance, random undersampling was applied, reducing the number of legitimate transactions. This technique

significantly improved LogReg's ability to detect fraud, with the AUC-ROC increasing from 0.7994 to 0.9089.

XGBoost performed well even without hyperparameter tuning or random undersampling, indicating its robustness as

a baseline model. The study highlights the critical importance of addressing class imbalance in fraud detection. Both

LogReg and XGBoost demonstrated potential, particularly when combined with techniques like undersampling or

hyperparameter tuning. These findings underscore the need for effective data preprocessing methods to enhance the

performance of machine learning models in detecting credit card fraud.

Keywords: Fraud Detection, Hyperparameter Tuning, Imbalanced data, Logistic Regression, Random

Undersampling, XGBoost

This work is an open access article licensed under a Creative Commons Attribution 4.0 International License.

1. INTRODUCTION

Over the past few decades, the fintech industry has experienced rapid growth, making credit cards

a common choice for everyday purchases. However, this rapid rise in credit card usage has also led to

an increase in credit card fraud, creating significant financial risks to both consumers and financial

institutions. Effective fraud detection has become essential to mitigate these risks and maintain the

integrity of financial systems.

To address this vulnerability, it is crucial to implement effective methods that can accurately

identify fraudulent transactions. Data mining and machine learning approaches have proven to be

particularly effective in this context[1]. Logistic Regression is a proven method known for its

effectiveness when dealing with straightforward datasets that have linear relationships[2]. However, it

faces challenges when handling complex data with many dimensions, known as the "curse of

dimensionality." As the number of features grows, Logistic Regression struggles to maintain accuracy,

requiring more data points[3], [4].

In contrast, Extreme Gradient Boosting (XGBoost) is a powerful machine learning algorithm that

enhances logistic regression's binary classification concept through gradient boosting[2]. It leverages

gradient tree boosting to create a more flexible ensemble model, making it highly effective in handling

complex relationships and non-linear patterns within high-dimensional data[3], [5]. Both algorithms

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306
http://creativecommons.org/licenses/by/4.0/

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

116

share the foundation of predicting binary outcomes using a logistic function, but XGBoost offers a more

robust approach for intricate datasets.[2].

To maximize the performance of XGBoost, hyperparameter tuning is applied. This method

optimizes the algorithm's performance by adjusting its parameters. In this study, Randomized Search

CV is employed for hyperparameter tuning due to its simplicity and minimal computational resource

requirements[6]. It often helps to improve model performance in many cases.

Real-world applications often involve imbalanced data, where classes are not equally represented.

This imbalance can significantly impact model performance, biased to the majority class [7], [8]. With

this matter, It is crucial to find the best way to address the imbalance data problem[7]. However, the

optimal approach depends on the characteristics of the dataset and the specific classification task[7]. For

that reason, Random undersampling could be a great approach regarding this matter[9], [10].

Random undersampling is a simple sampling technique that can be used to addresses data

imbalance by randomly selecting samples, in this study, from the majority class[11]. It is suitable for

this study as it effectively reduces the size of the majority class. Given the large size of the dataset,

substantial computational resources are required. However, the simplicity of random undersampling

makes it an efficient choice for this purpose.

In summary, this paper aims to achieve two objectives: (I) to compare the performance of Logistic

Regression and XGBoost algorithms using Random Undersampling in classifying fraudulent

transactions, and (II) to optimize the XGBoost accuracy Hyperparameter Tuning using Randomized

Search CV.

2. METHOD

This chapter explain the methodology employed in this research to compare the performance of

Logistic Regression and XGBoost for credit card fraud detection with Random Undersampling

technique. The chapter will be divided into the following sections in Figure 1:

Figure 1. Research method stage

2.1. Data Description

The dataset is obtained from Kaggle[12] which is available publicly. It has 1,000,000 samples

with 87,403 true values in the target class and 912,597 false values in the target class. It is implied that

this dataset has an extremely imbalanced class with only 8.74% of the minority class. Besides, It also

has 7 features with 3 numeric data and 4 subtype data, with a target class column at the end. The dataset

is described in Table 1 and Table 2.

Table 1. Dataset Description

No Column Description

1 distance_from_home Distance between the attempted transaction location and the cardholder's

registered address (in Kms).

2 distance_from_last_tr

ansaction

Distance between the attempted transaction location and the location of the

most recent transaction using the same card (in Kms).

3 ratio_to_median_purc

hase_price

Ratio of the current transaction amount to the median transaction amount for

this card (e.g., transaction amount of 85 with a median of 50 would be 0.59).

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

117

4 repeat_retailer Indicates whether the attempted transaction occurs at a retailer where the card

is frequently used (Yes/No).

5 used_chip Indicates whether the transaction attempt involved using an RFID chip in the

card (Yes/No).

6 used_pin_number Indicates whether the transaction attempt involved entering a PIN number

(Yes/No).

7 online_order Indicates whether the transaction attempt is for an online order (Yes/No).

8 fraud Indicates whether the transaction is classified as fraudulent or legitimate

(Yes/No).

Table 2. Summary of Statistics

No Column Type Max Min Mean Std

1 distance_from_home Numerical 10632.723670 0.004874 26.628792 65.90784

2 distance_from_last_t

ransaction
Numerical 11851.104560 0.000118 5.036519 25.843093

3 ratio_to_median_pur

chase_price
Numerical 267.802942 0.004399 1.824182 2.799589

4 repeat_retailer Categorical

(Binary)
1.000000 0.000000 0.881536 0.323157

5 used_chip Categorical

(Binary)
1.000000 0.000000 0.350399 0.477095

6 used_pin_number Categorical

(Binary)
1.000000 0.000000 0.100608 0.300809

7 online_order Categorical

(Binary)
1.000000 0.000000 0.650552 0.476796

8 fraud Categorical

(Binary)
1.000000 0.000000 0.087403 0.282425

2.2. Preparation

This study leverages a credit card fraud dataset with minimal cleaning requirements. In this stage,

Exploratory data analysis (EDA) is conducted as the initial step to gain valuable insights into the data

distribution and identify potential areas for preprocessing. Understanding these characteristics helps

guide subsequent data preparation techniques. Following EDA, the data undergoes the following

preprocessing steps:

2.2.1. Splitting

The data is then split into training and testing sets. Splitting to 80% for training and 20% for

testing is one of the common approach. The training set is used to build the model, while the unseen

testing set provides an unbiased evaluation of the model's generalizability. Splitting the data first before

doing any preprocessing process is generally recommended to prevent data leakage to the testing set and

unintentionally influence the model during training, leading to overfitting.

2.2.2. Feature Scaling

Feature scaling is applied to standardize the data. Standardization ensures all features have a mean

of zero and a standard deviation of one, removing the influence of units and promoting equal

contribution from each feature during model training[13] For Standardization purpose, StandardScaller

from Python’s Scikit-Learn library is used.

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

118

2.2.3. Random Undersampling (RUS)

To address class imbalance within the dataset, Random Undersampling (RUS) is employed. This

technique strategically removes majority class samples to a desired number[11]. Samples are chosen

randomly, aiming to achieve a more balanced class distribution. In this study, RUS is used to choose

200,000 of majority class in 800,000 training set. RUS requires fewer computational resources, but it

does come with a potential drawback such as the possibly loss of valuable data insights. The decision to

use it depends on the severity of the class imbalance and the chosen modeling approach[14], [15].

2.3. Implementation

This section focuses on the modelling stage, with the implementation of two machine learning

algorithms, Logistic Regression and XGBoost. Hyperparameter Tuning with Randomized Search CV

will also be implemented with XGBoost. It will be a great step for the model to optimize their

performance in identifying fraudulent transactions[6].

2.3.1. Logistic Regression

A logistic regression can be interpreted as a generalized linear model (GLM) when the dependent

variable is binary, either 0 or 1 [16], [17]. It has recently been used to analyze the advantages of using

measurable independent factors and to see how a group of these factors affects the regression outcomes

[5]. Unlike linear regression, which predicts continuous values, logistic regression transforms its linear

output using the logistic function (sigmoid function) to produce a probability value between 0 and 1[18].

This probability indicates the likelihood of an observation belonging to the positive class (e.g.,

fraudulent transaction).

To estimate the probability of to the positive class, linear score is calculated first (z) using

equation 1. This score is a weighted sum of the independent variables, where each variable's contribution

is determined by its associated weight[19]. Equation 2 then employs the logistic function (σ) to

transform this linear score (z) into a probability estimate (𝒚̂) between 0 and 1.

𝒛 = 𝒘𝑻 ∗ 𝒙 + 𝒃 (1)

𝒚̂ = 𝝈(𝒛) =
𝟏

(𝟏+𝒆(−𝒛))
 (2)

Information:

z : Linear Predictor

𝒘𝑻 : Transpose of the Weights (w)

x : Independent Variable

b : Bias Term

𝒚̂ : Predicted Probability

𝝈(𝒛) : Logistic Function

e : Exponential Function (2.71828)

This function helps determine the likelihood of fraud. Logistic regression has several advantages,

including computational efficiency, making it suitable for large datasets and resource-constrained

situations. It can handle various types of variables and does not require normal distribution.[20].

Furthermore, it does well in capturing linear relationships between features and the target variable,

leading to accurate classifications. However, logistic regression is not without limitations. It is restricted

to binary classification problems only, as it struggles with scenarios involving more than two classes.

Additionally, logistic regression struggles with capturing non-linear relationships and may be sensitive

to outliers, potentially leading to suboptimal results [20].

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

119

2.3.2. XGBoost

Unlike logistic regression, which relies on a single model, XGBoost leverages the power of

ensemble learning, specifically a technique known as gradient boosting. Ensemble learning builds robust

models by combining predictions from multiple weak learners, often referred to as base learners which

is decision trees[21]. Gradient boosting takes this concept further by creating new models. Each new

model focuses on correcting the errors made by the previous one, leading to a more accurate ensemble

[22]

XGBoost offers several advantages that make it a really good option for different machine

learning jobs. Its ability to handle complex, non-linear relationships between features and the target

variable is a significant strength compared to simpler models like logistic regression[3]. Moreover,

XGBoost's ability to manage sparse data well and can train multiple parts at the same time, which is

great for dealing with complex datasets in real-world situations such as credit card fraud.

While XGBoost offers significant advantages, it's not without limitations. One consideration is

its computational demands. Training XGBoost models can require more computational resources

compared to simpler algorithms like logistic regression. Additionally, XGBoost has a larger set of

hyperparameters that require careful tuning for optimal performance[6]. This tuning process can be more

complex compared to LogReg, potentially requiring expertise and experimentation.

Despite these limitations, XGBoost remains a powerful tool for classification and regression tasks

due to its ability to learn complex patterns, handle large datasets efficiently, and offer valuable insights

into feature importance[5].

2.3.3. Hyperparameter Tuning

While machine learning models rely on hyperparameters that influence their performance, the

optimal values for these parameters need to be decide. Hyperparameter tuning offers a method to identify

the most optimal values to improve the model performance[23], [24].

Several techniques exist for hyperparameter tuning, with grid search and randomized search being

common approaches. Grid search carefully checks a set of values one by one, making sure to cover

everything broadly. Thus, this thoroughness need a lot of computing resource. [6]. Randomized search

offers an alternative by efficiently sampling hyperparameter combinations, reducing the computational

resources needed and risk of getting stuck in suboptimal configurations[6].

The importance of hyperparameter tuning is suitable for algorithms like XGBoost. XGBoost, with

its ensemble nature and gradient boosting framework, owns a rich set of hyperparameters impacting

model complexity, regularization, and learning rate[6]. Tuning these parameters allows for optimization,

leading to improved accuracy[6]. In this study, Randomized Search CV will be employed for XGBoost

to efficiently explore the hyperparameter space and achieve optimal model performance.

2.4. Evaluation

The implemented models will be evaluated on a held-out test set created by splitting the

preprocessed data in 80/20 split ratio. Established metrics like accuracy, precision, recall, F1-score, and

AUC-ROC will be used to compare different configurations performance of Logistic Regression and

XGBoost, such as with and without hyperparameter tuning Randomized Search CV, as well as with and

without Random undersampling. This evaluation will identify the most effective model configuration

for credit card fraud detection.

AUC-ROC (Area Under the Receiver Operating Characteristic Curve) serves as a performance

metric that summarizes how well a model distinguishes between positive and negative cases. It achieves

this by calculating the probability that a randomly chosen positive example ranks higher on the ROC

curve (higher True Positive Rate) compared to a randomly chosen negative example[21].

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

120

In binary classification tasks, accurately identifying both positive and negative cases is crucial.

True positives (TP) represent correctly classified positive examples, while true negatives (TN) represent

correctly classified negative examples. In the other hand, false positives (FP) occur when the model

mistakenly classifies a negative example as positive, and false negatives (FN) occur when the model

misses a positive example, identifying it as negative. It is included in the confusion matrix table is shown

in the table 3.

Table 3. Confusion Matrix

Actual Class
Predicted Class

1 0

1 TP FP

0 FN TN

Accuracy is the ratio of correctly predicted instances to the total instances and is formulated in

Equation 3:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100% (3)

Precision measures the proportion of true positive predictions out of all positive predictions made

and is formulated in Equation 4:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100% (4)

Recall quantifies the proportion of actual positive instances that were correctly identified and is

formulated in Equation 5:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100% (5)

F1-score is the harmonic mean of precision and recall, balancing the trade-off between these

metrics to provide an overall assessment of a model's performance in identifying positive cases while

minimizing false positives. It is formulated in Equation 6:

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (6)

Information:

TP : True Positive

TN : True Negative

FP : False Positive

FN : False Negative

3. RESULT

This section is a discussion of the study that has been done. Starting from the preprocessing,

implementation, and evaluation.

3.1. Preprocessing result

In this stage, several data preprocessing techniques is performed. To avoid contaminating the

testing set, the data is first split into training and testing sets with a ratio of 80:20. This ensures that the

preprocessing steps are applied only to the training data. The details of the split are shown in Table 4.

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

121

Table 4. Data splitting

Training Testing

80% 20%

800,000 200,000

1,000,000

Next, feature scaling is applied. Scaling the data before splitting it into training and testing sets is

crucial. This prevents the data leakage and statistics used for scaling (e.g., standard deviation and mean)

from being influenced by the testing data. Standardscaller is used in this stage for standardization

scaling. Standardization transforms the features to have a mean of 0 and a standard deviation of 1[25].

3.2. Sampling result

After scaling, a class imbalance handling technique is surely required for the data, such as a

sampling method[11]. In this stage, The train dataset will reduce it rows using random undersampling.

It only reduce the majority class rows to 200,000 while minority rows still remain the same. It will boost

the percentage of the minority class from 9% to 30%. The result and the before is shown in the figure 2

and 3.

Figure 2. Class percentage before sampling

Figure 3. Class percentage after sampling

Based on Figures 3 and 4, it can be observed that the ratio between the minority and majority

class has significantly improved after applying Random Undersampling (RUS). Figure 3 likely

represents the class distribution before RUS, where the majority class dominates the pie chart. In

contrast, Figure 4 presumably shows the distribution after RUS, where the minority class now occupies

a noticeably larger portion relative to the majority class. This visual representation suggests that RUS

effectively reduced the majority class size, leading to a more balanced class distribution.

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

122

3.3. Performance Comparison

After preprocessing the data, configuring the models is crucial for achieving optimal performance.

This research investigated several configurations: Logistic Regression with and without Random

Undersampling (RUS), and XGBoost with and without RUS, additionally exploring XGBoost with

hyperparameter tuning. Due to the large dataset and limited computational resources, Randomized

Search CV was employed as a hyperparameter tuning technique.

Following the exploration of various model configurations, this section delves deeper into the

performance comparison of these models. The results for each configuration will be analyzed using

metrics like accuracy, precision, recall, F1-score, and AUC-ROC. By comparing the performance

metrics across configurations, this study aim to identify the model that achieves the most robust and

accurate credit card fraud detection

3.3.1. Logistic Regression

Logistic Regression performed with 2 model configurations, with or without Random

Undersampling. The classification report is shown in the table 5 and 6.

Table 5. Logistic Regression Report without RUS

Precision Recall F1-Score Support

0.0 0.9634 0.9933 0.9781 182519

1.0 0.8964 0.6055 0.7228 17481

accuracy 0.9594 200000

macro avg 0.9299 0.7994 0.8504 200000

weighted avg 0.9575 0.9594 0.9558 200000

AUC-ROC 0.7994042037616316

Table 6. Logistic Regression Report with RUS

Precision Recall F1-Score Support

0.0 0.9852 0.9703 0.9777 182519

1.0 0.7322 0.8476 0.7857 17481

accuracy 0.9596 200000

macro avg 0.8587 0.9090 0.8817 200000

weighted avg 0.9631 0.9596 0.9609 200000

AUC-ROC 0.908957956266683

As shown in the figure 5 and 6, It is implied that Logistic Regression exhibits a substantial

improvement in AUC-ROC (from 0.7994 to 0.9089) after applying Random Undersampling (RUS),

while maintaining a similar overall accuracy (around 0.96). This suggests that the initial model, despite

achieving high accuracy, suffers from a class imbalance issue. The dominant class likely biases the

model's predictions, leading to a lower AUC-ROC, which reflects the model's ability to differentiate

between the positive and negative classes. RUS effectively addresses this imbalance by reducing the

majority class size, resulting in a more balanced distribution and a more robust performance measure as

evidenced by the significant increase in AUC-ROC.

3.3.2. XGBoost

XGBoost performed with 3 model configurations, the baseline model, with Hyperparameter

Tuning using Randomized Search CV, and with Random Undersampling . The result is shown in the

table 7 to 9.

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

123

Table 7. XGBoost Baseline Model Report

Precision Recall F1-Score Support

0.0 0.9991 0.9989 0.9990 182519

1.0 0.9886 0.9905 0.9896 17481

accuracy 0.9982 200000

macro avg 0.9939 0.9947 0.9943 200000

weighted avg 0.9982 0.9982 0.9982 200000

AUC-ROC 0.9947068391483049

Table 8. XGBoost Report with Hyperparameter Tuning

Precision Recall F1-Score Support

0.0 0.9991 0.9992 0.9991 182519

1.0 0.9915 0.9903 0.9909 17481

accuracy 0.9984 200000

macro avg 0.9953 0.9948 0.9950 200000

weighted avg 0.9984 0.9984 0.9984 200000

AUC-ROC 0.9947607431823108

Table 9. XGBoost Report with RUS

Precision Recall F1-Score Support

0.0 0.9996 0.9991 0.9994 182519

1.0 0.9904 0.9963 0.9934 17481

accuracy 0.9988 200000

macro avg 0.9950 0.9977 0.9964 200000

weighted avg 0.9988 0.9988 0.9988 200000

AUC-ROC 0.9976806125661357

Based on the table 7 to 9, It can be implied that XGBoost performs well on this classification task,

achieving high accuracy (around 99.8%) across all configurations. However, hyperparameter tuning and

Random Undersampling (RUS) appear to have minimal impact on overall accuracy. The key difference

lies in the model's ability to distinguish between classes, measured by AUC-ROC. While the baseline

XGBoost achieves a high AUC-ROC (0.9947), both tuning (0.9948) and RUS (0.9977) lead to slight

improvements. Notably, RUS has the most significant impact, suggesting that the original data have a

class imbalance issue. RUS helps address this imbalance, resulting in a model that can better

differentiate between the positive and negative classes, as reflected in the higher AUC-ROC score.

4. DISCUSSIONS

This analysis resulting critical insights into model performance, class imbalance effects, tuning

optimization effect, and the strengths of both algorithms. Both XGBoost and Logistic Regression

achieved high overall accuracy, with XGBoost at around 99.8% and Logistic Regression at 95.9% across

all configurations. However, a closer look reveals a significant difference in their ability to differentiate

between positive and negative classes, as indicated by the Area Under the ROC Curve (AUC-ROC).

While Logistic Regression achieved high accuracy, its initial AUC-ROC score (0.7994) hinting

at challenges with class imbalance. This is further supported by the analysis of precision and recall.

While Logistic Regression demonstrated high precision (0.9634) for the majority class, suggesting it

could predict the dominant class well, it struggled with recall (0.6055) for the minority class (class 1),

leading to a notable number of false negatives. This highlights Logistic Regression's limitations in

handling imbalanced datasets.

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

124

Applying Random Undersampling (RUS) to Logistic Regression significantly improves its AUC-

ROC score (0.9089). This suggests that RUS effectively addresses class imbalance by reducing the

majority class size, leading to a more balanced distribution and consequently, a more robust performance

measure. The improvement in recall for the minority class (0.8476) further supports this notion,

indicating that RUS helps Logistic Regression identify more true positives in the minority class.

In contrast, XGBoost consistently displayed a strong ability to distinguish between classes,

evident from its high AUC-ROC scores (around 0.995) across all setups. This indicates XGBoost's

inherent capability in handling class imbalance, possibly due to its ensemble learning approach and

capacity to capture intricate data relationships. Even without hyperparameter tuning or class balancing

techniques, XGBoost maintained a high AUC-ROC, showcasing its robustness in imbalanced

classification tasks. The application of Hyperparameter Tuning and Random Undersampling did not

significantly impact its performance, as the model was already performing well.

5. CONCLUSION

This study investigated the effectiveness of Logistic Regression (LogReg) and Extreme Gradient

Boosting (XGBoost) for credit card fraud detection. These findings highlight how important it is to solve

class imbalance problem, which is a big challenge in this field because there aren't many fraudulent

transactions in real-world case. Random Undersampling, a technique that reduces the majority class

size, was employed to address this imbalance dataset and successfully improve model performance. It

was observed that LogReg required modifications, such as the use of Random Undersampling, to

achieve optimal performance, while XGBoost demonstrated decent performance even in its baseline

state. The evaluation, using metrics like accuracy, precision, recall, F1-score, and AUC-ROC, revealed

that XGBoost consistently outperformed LogReg in identifying fraudulent transactions, especially when

hyperparameter tuning with Randomized Search was applied. This suggests that XGBoost's inherent

ability to handle complex relationships within data makes it a more robust choice for credit card fraud

detection tasks characterized by class imbalance.

CONFLICT OF INTEREST

The authors declares that there is no conflict of interest between the authors or with research

object in this paper.

REFERENCES

[1] A. RB and S. K. KR, “Credit card fraud detection using artificial neural network,” Global

Transitions Proceedings, vol. 2, no. 1, pp. 35–41, Jun. 2021, doi: 10.1016/j.gltp.2021.01.006.

[2] J. Pesantez-Narvaez, M. Guillen, and M. Alcañiz, “Predicting motor insurance claims using

telematics data—XGboost versus logistic regression,” Risks, vol. 7, no. 2, Jun. 2019, doi:

10.3390/risks7020070.

[3] P. Liu, X. J. Li, T. Zhang, and Y. H. Huang, “Comparison between XGboost model and logistic

regression model for predicting sepsis after extremely severe burns,” Journal of International

Medical Research, vol. 52, no. 5, May 2024, doi: 10.1177/03000605241247696.

[4] V. Berisha et al., “Digital medicine and the curse of dimensionality,” npj Digital Medicine, vol.

4, no. 1. Nature Research, Dec. 01, 2021. doi: 10.1038/s41746-021-00521-5.

[5] Y. Xu et al., “Predicting ICU Mortality in Rheumatic Heart Disease: Comparison of XGBoost

and Logistic Regression,” Front Cardiovasc Med, vol. 9, Feb. 2022, doi:

10.3389/fcvm.2022.847206.

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

125

[6] E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine

learning algorithms used for arabic sentiment analysis,” Informatics, vol. 8, no. 4, Dec. 2021,

doi: 10.3390/informatics8040079.

[7] N. H. N. B. M. Shahri, S. B. S. Lai, M. B. Mohamad, H. A. B. A. Rahman, and A. Bin Rambli,

“Comparing the performance of adaboost, xgboost, and logistic regression for imbalanced data,”

Mathematics and Statistics, vol. 9, no. 3, pp. 379–385, 2021, doi: 10.13189/ms.2021.090320.

[8] S. Wang, Y. Dai, J. Shen, and J. Xuan, “Research on expansion and classification of imbalanced

data based on SMOTE algorithm,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-

03430-5.

[9] E. F. Swana, W. Doorsamy, and P. Bokoro, “Tomek Link and SMOTE Approaches for Machine

Fault Classification with an Imbalanced Dataset,” Sensors, vol. 22, no. 9, May 2022, doi:

10.3390/s22093246.

[10] North Eastern Hill University. Department of Biomedical Engineering, Institute of Electrical and

Electronics Engineers. Kolkata Section, IEEE Industry Applications Society, and Institute of

Electrical and Electronics Engineers, International Conference on Computational Performance

Evaluation : ComPE 2020 online conference : 2nd-4th July 2020. doi:

https://doi.org/10.1109/ComPE49325.2020.9200087.

[11] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine Learning with Oversampling and

Undersampling Techniques: Overview Study and Experimental Results,” in 2020 11th

International Conference on Information and Communication Systems, ICICS 2020, Institute of

Electrical and Electronics Engineers Inc., Apr. 2020, pp. 243–248. doi:

10.1109/ICICS49469.2020.239556.

[12] DHANUSH NARAYANAN R, “Credit Card Fraud Dataset,” kaggle.com. Accessed: Jun. 01,

2024. [Online]. Available: https://www.kaggle.com/datasets/dhanushnarayananr/credit-card-

fraud

[13] H. Peng and J. Wang, “Unbalanced Data Processing and Machine Learning in Credit Card Fraud

Detection,” 2022, doi: 10.21203/rs.3.rs-2004320/v1.

[14] N. Nnamoko and I. Korkontzelos, “Efficient treatment of outliers and class imbalance for

diabetes prediction,” Artif Intell Med, vol. 104, Apr. 2020, doi: 10.1016/j.artmed.2020.101815.

[15] B. Liu and G. Tsoumakas, “Dealing with class imbalance in classifier chains via random

undersampling,” Knowl Based Syst, vol. 192, Mar. 2020, doi: 10.1016/j.knosys.2019.105292.

[16] Sri Sairam Engineering College. Department of Information Technology and Institute of

Electrical and Electronics Engineers, 2019 proceedings of the 3rd International Conference on

Computing and Communications Technologies (ICCCT’19) : February 21-22, 2019, Chennai,

India. doi: https://doi.org/10.1109/ICCCT2.2019.8824930.

[17] A. A. T. Fernandes, D. B. F. Filho, E. C. da Rocha, and W. da Silva Nascimento, “Read this

paper if you want to learn logistic regression,” Revista de Sociologia e Politica, vol. 28, no. 74,

pp. 1/1-19/19, 2020, doi: 10.1590/1678-987320287406EN.

[18] E. O. Bayman and F. Dexter, “Multicollinearity in Logistic Regression Models,” Anesth Analg,

vol. 133, no. 2, pp. 362–365, 2021, doi: 10.1213/ANE.0000000000005593.

[19] “Mathematical justification on the origin of the sigmoid in logistic regression,” Central

European Management Journal, 2022, doi: 10.57030/23364890.cemj.30.4.135.

[20] V. H. Nhu et al., “Shallow landslide susceptibility mapping: A comparison between logistic

model tree, logistic regression, naïve bayes tree, artificial neural network, and support vector

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

Jurnal Ilmu Komputer dan Informatika (JIKI) Vol. 5, No. 2, December 2025, Page. 115-126
P-ISSN: 2807-6664 https://jiki.jurnal-id.com

E-ISSN: 2807-6591 DOI: https://doi.org/10.54082/jiki.306

126

machine algorithms,” Int J Environ Res Public Health, vol. 17, no. 8, Apr. 2020, doi:

10.3390/ijerph17082749.

[21] Y. Zhang, J. Tong, Z. Wang, and F. Gao, “Customer Transaction Fraud Detection Using Xgboost

Model,” in Proceedings - 2020 International Conference on Computer Engineering and

Application, ICCEA 2020, Institute of Electrical and Electronics Engineers Inc., Mar. 2020, pp.

554–558. doi: 10.1109/ICCEA50009.2020.00122.

[22] H. Jain, A. Khunteta, and S. Srivastava, “Churn Prediction in Telecommunication using Logistic

Regression and Logit Boost,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 101–112.

doi: 10.1016/j.procs.2020.03.187.

[23] R. Turner et al., “Bayesian Optimization is Superior to Random Search for Machine Learning

Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020.” doi:

https://doi.org/10.48550/arXiv.2104.10201.

[24] H. J. P. Weerts, A. C. Mueller, and J. Vanschoren, “Importance of Tuning Hyperparameters of

Machine Learning Algorithms,” Jul. 2020, doi: https://doi.org/10.48550/arXiv.2007.07588.

[25] H. Benhar, A. Idri, and J. L Fernández-Alemán, “Data preprocessing for heart disease

classification: A systematic literature review.,” Computer Methods and Programs in

Biomedicine, vol. 195. Elsevier Ireland Ltd, Oct. 01, 2020. doi: 10.1016/j.cmpb.2020.105635

https://jiki.jurnal-id.com/
https://doi.org/10.54082/jiki.306

