Prediksi Kanker Darah Menggunakan Metode Convolutional Neural Network
DOI:
https://doi.org/10.54082/jiki.156Kata Kunci:
Convolutional Neural Network (CNN), Deteksi Dini, Kanker Darah, Leukemia, Mobilenetv2Abstrak
Leukemia pada anak-anak di Indonesia menjadi perhatian serius dalam bidang kesehatan karena variasi tingkat kelangsungan hidup dan dampak negatif dari pengobatan. Penelitian ini bertujuan meningkatkan deteksi dini dan pengelolaan leukemia pada anak-anak melalui penerapan metode Convolutional Neural Network (CNN). Metode yang digunakan adalah arsitektur MobileNetV2 untuk mengklasifikasikan gambar sel darah terkait kanker darah. Dataset yang digunakan berisi 3257 gambar sel darah yang telah dipreproses menjadi resolusi 300x300 piksel. Hasil penelitian menunjukkan bahwa implementasi CNN dengan arsitektur MobileNetV2 menghasilkan akurasi 95.6%, presisi 94.8%, recall 96.2%, dan F1-score 95.5%. Evaluasi model menggunakan confusion matrix menunjukkan tingkat kesalahan yang rendah dalam klasifikasi gambar normal dan leukemia, menyoroti efisiensi dan efektivitas MobileNetV2 dalam klasifikasi gambar medis.
Referensi
S. Arifah and A. Patoomwan, “The Issues Related to Children with Leukemia in Indonesia: An Integrative Review,” Jurnal Berita Ilmu Keperawatan, vol. 16, no. 2, pp. 252–268, 2023.
A. V. Ikechukwu and S. Murali, “i-Net: a deep CNN model for white blood cancer segmentation and classification,” International Journal of Advanced Technology and Engineering Exploration, vol. 9, no. 95, pp. 1448–1464, Oct. 2022, doi: 10.19101/IJATEE.2021.875564.
W. Rahman, M. G. G. Faruque, K. Roksana, A. H. M. S. Sadi, M. M. Rahman, and M. M. Azad, “Multiclass blood cancer classification using deep CNN with optimized features,” Array, vol. 18, pp. 1–23, Jul. 2023, doi: 10.1016/j.array.2023.100292.
E. Y. Abbasi et al., “A machine learning and deep learning-based integrated multi-omics technique for leukemia prediction,” Heliyon, vol. 10, no. 3, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25369.
S. Mattapalli, R. Athavale, T. Jefferson, and H. School, “ALLNet: A Hybrid Convolutional Neural Network to Improve Diagnosis of Acute Lymphocytic Leukemia (ALL) in White Blood Cells,” 2022.
D. Kumar et al., “Automatic Detection of White Blood Cancer from Bone Marrow Microscopic Images Using Convolutional Neural Networks,” IEEE Access, vol. 8, pp. 142521–142531, 2020, doi: 10.1109/ACCESS.2020.3012292.
A. T. Kopylov et al., “Convolutional neural network in proteomics and metabolomics for determination of comorbidity between cancer and schizophrenia,” J Biomed Inform, vol. 122, Oct. 2021, doi: 10.1016/j.jbi.2021.103890.
H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA Cancer J Clin, vol. 71, no. 3, pp. 209–249, May 2021, doi: 10.3322/caac.21660.
S. Rajappa, M. Singh, R. Uehara, S. E. Schachterle, and S. Setia, “Cancer incidence and mortality trends in Asia based on regions and human development index levels: an analyses from GLOBOCAN 2020,” Curr Med Res Opin, vol. 39, no. 8, pp. 1127–1137, 2023, doi: 10.1080/03007995.2023.2231761.
B. S. Chhikara and K. Parang, “Chemical Biology LETTERS Global Cancer Statistics 2022: the trends projection analysis,” 2023. [Online]. Available: https://pubs.thesciencein.org/cbl
C. Panuzzo, A. Jovanovski, M. S. Ali, D. Cilloni, and B. Pergolizzi, “Revealing the Mysteries of Acute Myeloid Leukemia: From Quantitative PCR through Next-Generation Sequencing and Systemic Metabolomic Profiling,” Journal of Clinical Medicine, vol. 11, no. 3. MDPI, pp. 1–13, Feb. 01, 2022. doi: 10.3390/jcm11030483.
K. Dunphy, P. Dowling, D. Bazou, and P. O’Gorman, “Current methods of post-translational modification analysis and their applications in blood cancers,” Cancers, vol. 13, no. 8. MDPI, Apr. 02, 2021. doi: 10.3390/cancers13081930.
S. Leotta et al., “Prevention and Treatment of Acute Myeloid Leukemia Relapse after Hematopoietic Stem Cell Transplantation: The State of the Art and Future Perspectives,” Journal of Clinical Medicine, vol. 11, no. 1. MDPI, Jan. 01, 2022. doi: 10.3390/jcm11010253.
D. Garniasih, S. Susanah, Y. Sribudiani, and D. Hilmanto, “The incidence and mortality of childhood acute lymphoblastic leukemia in Indonesia: A systematic review and meta-analysis,” PLoS One, vol. 17, no. 6, pp. 1–13, Jun. 2022, doi: 10.1371/journal.pone.0269706.
N. M. Sari et al., “Monitoring Of High-Dose Methotrexate (Mtx)-Related Toxicity and Mtx Levels in Children with Acute Lymphoblastic Leukemia: A Pilot-Study in Indonesia,” Asian Pacific Journal of Cancer Prevention, vol. 22, no. 7, pp. 2025–2031, Jul. 2021, doi: 10.31557/APJCP.2021.22.7.2025.
D. Guna et al., “HUBUNGAN PERAWATAN PALIATIF DENGAN KUALITAS HIDUP ANAK LEUKEMIA:LITERATURE REVIEW NASKAH PUBLIKASI,” 2022.
L. Agnello et al., “The value of a complete blood count (Cbc) for sepsis diagnosis and prognosis,” Diagnostics, vol. 11, no. 10. Multidisciplinary Digital Publishing Institute (MDPI), Oct. 01, 2021. doi: 10.3390/diagnostics11101881.
K. Foucar et al., “Guide to the Diagnosis of Myeloid Neoplasms: A Bone Marrow Pathology Group Approach,” Am J Clin Pathol, vol. 160, no. 4, pp. 365–393, Oct. 2023, doi: 10.1093/ajcp/aqad069.
V. Lestringant, H. Guermouche-Flament, M. Jimenez-Pocquet, J. B. Gaillard, and D. Penther, “Cytogenetics in the management of hematological malignancies: An overview of alternative technologies for cytogenetic characterization,” Curr Res Transl Med, vol. 72, no. 3, Sep. 2024, doi: 10.1016/j.retram.2024.103440.
G. Riva et al., “Multiparametric flow cytometry for MRD monitoring in hematologic malignancies: Clinical applications and new challenges,” Cancers (Basel), vol. 13, no. 18, Sep. 2021, doi: 10.3390/cancers13184582.
A. Upreti, “Convolutional Neural Network (CNN). A Comprehensive Overview,” 2022, doi: 10.20944/preprints202208.0313.v3.
G. Shamai, R. Schley, Y. Binenbaum, R. Kimmel, and R. Elhasid, “Prediction of Initial Risk Group, B/T Subtype, and ETV6-RUNX1 Translocation in Pediatric Acute Lymphoblastic Leukemia By Deep Convolutional Neural Network Analysis of Giemsa-Stained Whole Slide Images,” Blood, vol. 140, no. Supplement 1, pp. 1911–1912, Nov. 2022, doi: 10.1182/blood-2022-157043.
E. Y. Abbasi et al., “A machine learning and deep learning-based integrated multi-omics technique for leukemia prediction,” Heliyon, vol. 10, no. 3, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25369.
J. Kockwelp et al., “Deep learning predicts therapy-relevant genetics in acute myeloid leukemia from Pappenheim-stained bone marrow smears,” Blood Adv, vol. 8, no. 1, pp. 70–79, Jan. 2024, doi: 10.1182/bloodadvances.2023011076.
C. Mondal et al., “Ensemble of Convolutional Neural Networks to diagnose Acute Lymphoblastic Leukemia from microscopic images,” Inform Med Unlocked, vol. 27, Jan. 2021, doi: 10.1016/j.imu.2021.100794.
SHEIKH SADI BANDAN, “Leukemia Disease,” kaggle. Accessed: Jul. 15, 2024. [Online]. Available: https://www.kaggle.com/datasets/sheikhsadibandan/leukemia-disease/data
R. Az-Zahradin Putri and D. Fitriati, “Implemantasi Metode Convolutional Neural Network Dan Ekstraksi GLCM Pada Klasifikasi Kanker Paru,” Semrestek 2022, pp. 1–10, 2022
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Hani Istiqomah, Purwono Purwono, Rian Ardianto

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.