Applied Algebra for Image Compression: A Systematic Literature Review
DOI:
https://doi.org/10.54082/jiki.208Kata Kunci:
Citra, Kompresi, Kualitas, Systematic Literature ReviewAbstrak
Kompresi citra berperan penting dalam mengurangi ukuran file gambar tanpa mengorbankan kualitas signifikan, yang krusial untuk efisiensi penyimpanan dan kecepatan transmisi data di era digital. Penelitian ini melakukan tinjauan sistematis terhadap literatur terkait kompresi citra untuk menganalisis jenis gambar, algoritma, metode, serta metrik evaluasi yang digunakan. Dengan berpedoman pada Kitchenham's Guidelines for Performing Systematic Literature Review in Software Engineering Version 2.3, sebanyak 23 dari 28 jurnal yang diidentifikasi memenuhi kriteria inklusi dengan fokus utama pada implementasi kompresi citra. Hasil kajian menunjukkan bahwa citra grayscale, citra hasil komputerisasi, dan objek fotografi adalah jenis citra yang paling banyak digunakan. Di sisi metode, algoritma Singular Value Decomposition (SVD) mendominasi penelitian kompresi, sedangkan Peak Signal-to-Noise Ratio (PSNR) dan Mean Squared Error (MSE) adalah metrik utama dalam mengevaluasi kualitas kompresi gambar. Penelitian ini memberikan panduan komprehensif bagi peneliti dan praktisi dalam memilih metode kompresi optimal sesuai kebutuhan, baik untuk penyimpanan maupun transmisi data digital. Penelitian ini diharapkan menjadi acuan bagi studi selanjutnya dalam mengembangkan teknik kompresi yang lebih efisien dan inovatif, serta mendorong kemajuan dalam komunikasi digital di era data besar. Dengan demikian, hasil ini diharapkan memberikan dampak signifikan dalam mempercepat pemrosesan, mengurangi biaya penyimpanan, dan mendukung efisiensi sistem komunikasi berbasis gambar.
Referensi
K. J. Audu, “Application of Singular Value Decomposition technique for compressing images,” Gadau Journal of Pure and Allied Sciences, vol. 1, no. 2, 2022, doi: 10.54117/gjpas.v1i2.21.
K. El Asnaoui, “Image Compression Based on Block SVD Power Method,” Journal of Intelligent Systems, vol. 29, no. 1, 2020, doi: 10.1515/jisys-2018-0034.
M. A. Al-jawaherry and S. Y. Hamid, “Image Compression Techniques: Literature Review,” Journal of Al-Qadisiyah for Computer Science and Mathematics, vol. 13, no. 4, 2021, doi: 10.29304/jqcm.2021.13.4.860.
V. I. Ungureanu, P. Negirla, and A. Korodi, “Image-Compression Techniques: Classical and ‘Region-of-Interest-Based’ Approaches Presented in Recent Papers,” 2024. doi: 10.3390/s24030791.
B. Kitchenham and K. Staffs, “Guidelines for performing systematic literature reviews in software engineering,” Technical report, Ver. 2.3 EBSE Technical Report. EBSE, no. January 2007, pp. 1–57, 2007.
R. Oetama, D. Tjahjana, I. Prasetiawan, and C. Anastasia, “Image Error Detection: A Systematic Literature Review,” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 3, pp. 837–846, 2023, doi: 10.33379/gtech.v7i3.2494.
P. Dash, M. Nayak, and G. Prasad Das, “Principal Component Analysis using Singular Value Decomposition for Image Compression,” Int J Comput Appl, vol. 93, no. 9, 2014, doi: 10.5120/16243-5795.
S. Nag, “Vector quantization using the improved differential evolution algorithm for image compression,” Genet Program Evolvable Mach, vol. 20, no. 2, pp. 187–212, Jun. 2019, doi: 10.1007/s10710-019-09342-8.
A. Hundet, R. C. Jain, and V. Sharma, “Block based compressive sensing algorithm using Eigen vectors for image compression,” in 2014 International Conference on Advances in Engineering and Technology Research, ICAETR 2014, 2014. doi: 10.1109/ICAETR.2014.7012884.
N. Pati, A. Pradhan, L. K. Kanoje, and T. K. Das, “An approach to Image Compression by using Sparse Approximation Technique,” in Procedia Computer Science, 2015. doi: 10.1016/j.procs.2015.04.213.
I. D. Irawati and A. B. Suksmono, “Image reconstruction based on compressive sampling using irls and omp algorithm,” J Teknol, vol. 78, no. 5, 2016, doi: 10.11113/jt.v78.8327.
Z. Wang, Y. Jiang, and S. Chen, “Image parallel block compressive sensing scheme using DFT measurement matrix,” Multimed Tools Appl, vol. 82, no. 14, 2023, doi: 10.1007/s11042-022-14176-1.
Nasrullah, J. Sang, M. A. Akbar, B. Cai, H. Xiang, and H. Hu, “Joint image compression and encryption using IWT with SPIHT, kd-tree and chaotic maps,” Applied Sciences (Switzerland), vol. 8, no. 10, 2018, doi: 10.3390/app8101963.
D. Occorsio, G. Ramella, and W. Themistoclakis, “Lagrange–Chebyshev Interpolation for image resizing,” Math Comput Simul, vol. 197, 2022, doi: 10.1016/j.matcom.2022.01.017.
A. Vinay and S. Natarajan, “Satellite image compression using ROI based EZW algorithm,” Indonesian Journal of Electrical Engineering and Informatics, vol. 5, no. 4, 2017, doi: 10.11591/ijeei.v5i4.368.
M. Bilal, Z. Ullah, O. Mujahid, and T. Fouzder, “Fast Linde–Buzo–Gray (FLBG) Algorithm for Image Compression through Rescaling Using Bilinear Interpolation,” J Imaging, vol. 10, no. 5, May 2024, doi: 10.3390/jimaging10050124.
R. A. Alotaibi and L. A. Elrefaei, “Text-image watermarking based on integer wavelet transform (IWT) and discrete cosine transform (DCT),” Applied Computing and Informatics, vol. 15, no. 2, 2019, doi: 10.1016/j.aci.2018.06.003.
A. Durafe and V. Patidar, “Development and analysis of IWT-SVD and DWT-SVD steganography using fractal cover,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 7, 2022, doi: 10.1016/j.jksuci.2020.10.008.
X. Huang, Y. Dong, G. Ye, and Y. Shi, “Meaningful image encryption algorithm based on compressive sensing and integer wavelet transform,” Front Comput Sci, vol. 17, no. 3, 2023, doi: 10.1007/s11704-022-1419-8.
S. F. A. Gani, R. A. Hamzah, R. Latip, S. Salam, F. Noraqillah, and A. I. Herman, “Image compression using singular value decomposition by extracting red, green, and blue channel colors,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 1, 2022, doi: 10.11591/eei.v11i1.2602.
P. Chowdhuri, P. Pal, and T. Si, “A novel steganographic technique for medical image using SVM and IWT,” Multimed Tools Appl, vol. 82, no. 13, 2023, doi: 10.1007/s11042-022-14301-0.
G. Garg and R. Kumar, “A Multi-Level Enhanced Color Image Compression Algorithm using SVD & DCT,” International Journal on Recent and Innovation Trends in Computing and Communication, vol. 10, no. 1, 2022, doi: 10.17762/ijritcc.v10i1s.5817.
H. R. Swathi, S. Sohini, Surbhi, and G. Gopichand, “Image compression using singular value decomposition,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Dec. 2017. doi: 10.1088/1757-899X/263/4/042082.
Y. Strümpler, J. Postels, R. Yang, L. Van Gool, and F. Tombari, “Implicit Neural Representations for Image Compression,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022. doi: 10.1007/978-3-031-19809-0_5.
Y. Zhong, J. Zhang, X. Cheng, G. Huang, Z. Zhou, and Z. Huang, “Reconstruction for block-based compressive sensing of image with reweighted double sparse constraint,” EURASIP J Image Video Process, vol. 2019, no. 1, 2019, doi: 10.1186/s13640-019-0464-1.
A. Kurniawan, T. W. Purboyo, and A. L. Prasasti, “Implementation of Image Compression Using Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT),” 2017. [Online]. Available: http://www.ripublication.com
W. Zhongeng and S. Chen, “Performance comparison of image block compressive sensing based on chaotic sensing matrix using different basis matrices,” in 2017 2nd International Conference on Image, Vision and Computing, ICIVC 2017, 2017. doi: 10.1109/ICIVC.2017.7984630.
M. A. M. Y. Alsayyh, D. Mohamad, T. Saba, A. Rehman, and J. S. AlGhamdi, “A novel fused image compression technique using DFT, DWT, and DCT,” Journal of Information Hiding and Multimedia Signal Processing, vol. 8, no. 2, 2017.
Zahraa. H. Abeda and G. K. AL-Khafaji, “Pixel Based Techniques for Gray Image Compression: A review,” Journal of Al-Qadisiyah for Computer Science and Mathematics, vol. 14, no. 2, 2022, doi: 10.29304/jqcm.2022.14.2.967.
N. Vij and J. Singh, “Gray scale image compression using PSO with guided filter and DWT,” in Advances in Intelligent Systems and Computing, 2017. doi: 10.1007/978-981-10-3153-3_23.
Y.-C. Hu, W.-L. Chen, and P.-Y. Tsai, “Refined codebook for grayscale image coding based on vector quantization,” Optical Engineering, vol. 54, no. 7, 2015, doi: 10.1117/1.oe.54.7.073110.
M. Sari and W. Lubis, “Penerapan Algoritma Levenstein Pada Aplikasi Kompresi File Gambar,” Jurnal Pelita Informatika, vol. 8, no. April, 2020, doi: 10.30865/komik.v2i1.946.
C. T. Utari, “IMPLEMENTASI ALGORITMA RUN LENGTH ENCODING UNTUK PERANCANGANAPLIKASI KOMPRESI DAN DEKOMPRESI FILE CITRA,” Jurnal TIMES, vol. 5, no. 2, 2017, doi: 10.51351/jtm.5.2.2016553.
M. Rizqi, E. Suhartono, and I. N. A. Ramantryana, “Compressive Sensing Berbasis Dct-Dwt Untuk Kompresi Watermark Pada Watermarking Citra Digital Dengan Domain Swt-Svd Compressive,” e-Proceeding of Engineering, vol. 6, no. 1, 2019.
R. A. Wahyu Fibriyanti and K. Karyati, “Aplikasi Dekomposisi Nilai Singlar Matriks Quaternion terhadap Perbaikan Citra Low dan High Pass Filtering,” Jurnal Sains Dasar, vol. 11, no. 1, 2022, doi: 10.21831/jsd.v11i1.41951.
E. N. F. Astuti, G. Budiman, and L. Novamizanti, “Perancangan Teknik LWT-DCT-SVD Pada Audio Watermarking Stereo Dengan Sinkronisasi Dan Compressive Sampling,” Prosiding Seminar Nasional XII “Rekayasa Teknologi Industri dan Informasi, 2017.
U. Suwardoyo and D. Dwiyanti, “Implementasi Algoritma Discrete Cosine Transform Pada Kompresi Citra,” Jurnal Sintaks Logika, vol. 3, no. 2, 2023, doi: 10.31850/jsilog.v3i2.2522.
W. Widiyono, “Metode Fuzzy Vector Quantization Untuk Kompresi Citra RGB Motif Batik Pekalongan,” Smart Comp: Jurnalnya Orang Pintar Komputer, vol. 11, no. 1, 2022, doi: 10.30591/smartcomp.v11i1.3235.
J. Chen and S. W. Son, “PSNR-Aware Quantization for DCT-based Lossy Compression,” in Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023, 2023. doi: 10.1109/BigData59044.2023.10386333.
C. Wang, Y. Yang, and J. Shen, “PSNR estimate for JPEG compression,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018. doi: 10.1007/978-3-319-77383-4_68.
T. B. Taha, “Modified PSNR Metric for Watermarked-Image Assessment,” in 2023 20th International Multi-Conference on Systems, Signals and Devices, SSD 2023, 2023. doi: 10.1109/SSD58187.2023.10411302.
O. Keles, M. A. Yilmaz, A. M. Tekalp, C. Korkmaz, and Z. Dogan, “On the Computation of PSNR for a Set of Images or Video,” in 2021 Picture Coding Symposium, PCS 2021 - Proceedings, 2021. doi: 10.1109/PCS50896.2021.9477470.
S. Dost, F. Saud, M. Shabbir, M. G. Khan, M. Shahid, and B. Lovstrom, “Reduced reference image and video quality assessments: review of methods,” 2022. doi: 10.1186/s13640-021-00578-y.
S. Jamil, “Review of the Image Quality Assessment Methods for the Compressed Images,” SSRN Electronic Journal, 2024, doi: 10.2139/ssrn.4694365.
R. Cheng, Y. Yu, D. Shi, and W. Cai, “The critical review of image and video quality assessment methods,” 2022. doi: 10.11834/jig.210314.
N. Tariq, R. A. Hamzah, T. F. Ng, S. L. Wang, and H. Ibrahim, “Quality Assessment Methods to Evaluate the Performance of Edge Detection Algorithms for Digital Image: A Systematic Literature Review,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3089210.
M. T. Rasheed, D. Shi, and H. Khan, “A comprehensive experiment-based review of low-light image enhancement methods and benchmarking low-light image quality assessment,” 2023. doi: 10.1016/j.sigpro.2022.108821.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Salman Alfarisi, Rivilyo Mangolat Rizky Sitanggang, Athalia Christina

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.