Hybrid Classification of Date Fruits Varieties Using GLCM, RGB Features and Convolutional Neural Network
DOI:
https://doi.org/10.54082/jiki.290Keywords:
CNN, Date fruit Classification, GLCM, RGB, VGG19Abstract
Classifying date fruit varieties is a challenging task due to their high visual similarity in terms of texture and color. This study aims to address this issue by developing an automated classification model that combines handcrafted Gray Level Co-occurrence Matrix (GLCM) texture features and average RGB color channels with Convolutional Neural Network (CNN) classifiers. The dataset comprises 1,658 images from nine varieties of date fruits, divided into 70% training and 30% testing subsets. The proposed workflow includes image preprocessing (resizing, normalization, grayscale conversion), extraction of GLCM features (contrast, energy, homogeneity, correlation), computation of average RGB channels, feature fusion, and CNN training using VGG16 and VGG19 architectures with Adam and Adadelta optimizers. The model performance is evaluated using accuracy, precision, recall, F1-score, and confusion matrix. Experimental results demonstrate that VGG19 with the Adam optimizer achieved the highest validation accuracy of 91%, slightly outperforming VGG16 (90%) but remaining below the 96% accuracy reported in prior studies using MobileNetV2. The integration of handcrafted features enhanced sensitivity to subtle color and texture variations, although it introduced potential feature redundancy. In conclusion, the hybrid GLCM–RGB–CNN with VGG19 and Adam achieved 91% accuracy, proving the benefit of combining handcrafted and deep features while highlighting opportunities for further enhancement through data augmentation and architectural optimization.
References
M. Risa, B. Keliat, and M. Ikhsan, “Komparasi Algoritma Support Vector Machine dan Naïve Bayes pada Klasifikasi Jenis Buah Kurma berdasarkan Citra Hue Saturation Value Comparison of Support Vector Machine and Naïve Bayes Algorithms on Date Fruit Type Classification based on Hue Saturation V,” vol. 14, pp. 470–481, 2025.
A. R. Hermanto, A. Aziz, and S. Sudianto, “Perbandingan Arsitektur MobileNetV2 dan RestNet50 untuk Klasifikasi Jenis Buah Kurma,” J. Sist. dan Teknol. Inf., vol. 12, no. 4, pp. 630–637, 2024, doi: 10.26418/justin.v12i4.80358.
M. Fandi, “Aplikasi Identifikasi Jenis Buah Kurma Dengan Metode GLCM Berbasis Android,” J. Pengemb. Rekayasa dan Teknol., vol. 4, no. 1, pp. 34–44, 2020, doi: 10.26623/jprt.v16i1.2109.
M. F. Nadhif and S. Dwiasnati, “Classification of Date Fruit Types Using CNN Algorithm Based on Type,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 36–42, 2023, doi: 10.57152/malcom.v3i1.724.
A. Dwi Putro and H. Tantyoko, “Hybrid Algoritma Vgg16-Net Dengan Support Vector Machine Untuk Klasifikasi Jenis Buah dan sayuran,” JTIM J. Teknol. Inf. dan Multimed., vol. 5, no. 2, pp. 56–65, 2023, doi: 10.35746/jtim.v5i2.335.
F. Farahdinna, M. N. Shofy, U. Nasional, and B. Iris, “IMPLEMENTASI K-NEAREST NEIGHBOR UNTUK KLASIFIKASI BUNGA IRIS,” vol. 9, no. 2, pp. 3510–3514, 2025.
W. S. Sari, C. A. Sari, F. I. Komputer, and U. D. Nuswantoro, “Klasifikasi Bunga Mawar Menggunakan KNN dan Ekstraksi Fitur GLCM dan HSV,” vol. 5, pp. 145–156, 2022.
H. Pratama, “BUAH SUKUN BERDASARKAN EKSTRAKSI FITUR WARNA DAN TEKSTUR DENGAN METODE LDA ( LINEAR DISCRIMINANT ANALYSIS ) SKRIPSI Oleh : HAMDAN PRATAMA 188160029 UNIVERSITAS MEDAN AREA,” 2024.
M. Muhathir, M. H. Santoso, and D. A. Larasati, “Wayang Image Classification Using SVM Method and GLCM Feature Extraction,” J. Informatics Telecommun. Eng., vol. 4, no. 2, pp. 373–382, 2021, doi: 10.31289/jite.v4i2.4524.
I. Widya Saputri Nst, L. Sofinah Harahap, A. Baihaqi, F. Sains dan Teknologi, and P. Studi Ilmu Komputer, “Konversi Citra Rgb Ke Grayscale Menggunakan Python,” JUPITER J. Penelit. Ilmu dan Teknol. Komput., vol. 17, no. 2, pp. 845–855, 2025, [Online]. Available: https://jurnal.polsri.ac.id/index.php/jupiter/article/view/10740
A. Ismail, R. Wirawan, N. Umar, and R. Hidayat, “Aplikasi Citra Digital untuk Klasifikasi Kematangan Buah Pepaya,” Pros. SISFOTEK, pp. 427–432, 2024, [Online]. Available: http://www.seminar.iaii.or.id/index.php/SISFOTEK/article/view/526%0Ahttp://www.seminar.iaii.or.id/index.php/SISFOTEK/article/download/526/449
M. Rizkinia, D. Kushardono, and R. Arief, “Integration of GLCM Texture Features and CNN Classifier for SAR-Based Rice Paddy Mapping,” 8th Int. Eng. Student Conf. 2023, no. February, pp. 378–383, 2024.
P. F. Johari, N. Arifin, M. Muzaki, and M. S. A. Utama, “Corn Leaf Diseases Classification Using CNN with GLCM, HSV, and L*a*b* Features,” J. Tek. Inform., vol. 6, no. 2, pp. 709–722, 2025, doi: 10.52436/1.jutif.2025.6.2.4345.
L. Elvitaria, E. F. A. Shaubari, N. A. Samsudin, S. K. A. Khalid, Salamun, and Z. Indra, “A Proposed Batik Automatic Classification System Based on Ensemble Deep Learning and GLCM Feature Extraction Method,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 10, pp. 553–561, 2024, doi: 10.14569/IJACSA.2024.0151058.
Weny Indah Kusumawati and Adisaputra Zidha Noorizki, “Perbandingan Performa Algoritma VGG16 Dan VGG19 Melalui Metode CNN Untuk Klasifikasi Varietas Beras,” J. Comput. Electron. Telecommun., vol. 4, no. 2, 2023, doi: 10.52435/complete.v4i2.387.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lailia Rahmawati, Irma Erviana, Budiman Budiman, Khairunnisa Khairunnisa, Sutriawan Sutriawan

This work is licensed under a Creative Commons Attribution 4.0 International License.



